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1. Introduction  

The partitioning of the input space into separate clusters based on a common theme is known as clustering or 

unsupervised pattern classification. The purpose of a clustering algorithm is to carry out a partition such that all 

the objects within a cluster are like each other and the objects among different clusters are unlike [1, 2]. Hence, 

the aim of clustering is to detect the natural forms in the given set and clusters are popularly used in various 

applications including psychology[3], biology, pattern recognition [4, 5], image processing[6], and computer 

security[7]. Once a clustering algorithm has processed a dataset and obtained partition of the input data, a relevant 

question arises: Does the proposed partition solve the problem of input data? The reason behind this question is of 

great importance in many ways. Secondly, there exists no optimal clustering algorithm. Therefore, various 

algorithms — or even similar configuration of the single algorithm lead to alternative divisions which were never 

deemed to be optimum under all circumstances[8]. Hence, in developing efficient clusters, there ought to be a 

calculation of various segments of partitioning among which we should take the one that matches better the 

data. Secondly, many clustering algorithms cannot ascertain the number of natural clusters within the data, thus 

the algorithm is normally provided with this value – typically called the k parameter. The common procedure 

applied is to use the algorithm multiple times for each run of the k value. Subsequently, each partition is evaluated 

and determined to choose the best that suits the supplied data. 

Clustering accuracy measures how close the generated clusters are to the real structure or ground truth in the given 

dataset[9].  This evaluates how well data points are put together as a cluster. Typically, metrics such as the adjusted 

rand index and silhouette score are used.  Validating unsupervised results is difficult because there is no labelled 
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A R T I C L E   I N F O  A B S T R A C T 

Clustering is an important method in data analysis, faces challenges due to the 

different nature of datasets, resulting in certain algorithms being less effective 

and taking a long time. Choosing the most effective clustering method 

involves evaluating its accuracy and computational speed for a dataset poses 

a significant challenge for today's researchers. To address these issues, current 

study compares different clustering methods, by using datasets, including iris, 

seed, and well log to evaluate their accuracy and execution speed.  Results 

show that K-means performs better with large datasets. As sample size 

increases, the accuracy of the K-means algorithm tends to improve. The 

execution time of k-means is influenced by the number of features in the 

dataset, with datasets having a larger number of features typically requiring 

more time to process. Mean shift algorithm and spectral clustering algorithm 

are performed well in small data sets, but it takes a long time.  
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ground truth for determining cluster accuracy. Varying cluster shapes, sizes, and densities generate ambiguity that 

affects determination of proper quality of clusters. Moreover, an accurate evaluation is complicated through 

sensitivity to algorithm parameters as well as the selection of evaluation metrics[10]. This article aims to 

comprehensively evaluate and compare various clustering methods, K-means, Hierarchical Agglomerative 

Clustering, DBSCAN, Mean Shift, and Spectral Clustering. The assessment involves applying these methods to 

different datasets—iris, seed, and well log data—with varying observation counts. The goal is to analyze their 

performance based on accuracy and execution time. The results highlight K-means clustering as a robust 

performer, particularly excelling in accuracy and efficient processing with larger datasets. However, when 

considering the iris dataset, Spectral Clustering emerges as the most accurate among the mentioned algorithms. In 

the case of seed data, Mean Shift demonstrates favorable results, albeit with longer execution times compared to 

the other methods. Notably, K-means struggles in scenarios involving noisy data and isn't suitable for smaller 

datasets. Future research endeavors should focus on enhancing K-means clustering's resilience to noise and 

adaptability for smaller datasets. 

The main goals of this study are outlined as follows: 

1. Assessing the accuracy of various clustering algorithms. 

2. Evaluating the execution time of these clustering algorithms. 

3. Analyzing the performance of these algorithms across various datasets with differing features. 

The literature review is presented in section 2, while section 3 includes methodology highlighting different 

clustering algorithms like K-means, Hierarchical Agglomerative Clustering, DBSCAN, Mean Shift, and Spectral 

Clustering. Section 4 deals with experimental results and analyses adopting iris, seed, and well log data 

sets. Finally, Section 5 involves discussions on research findings including contributions and conclusions. 

2. Literature Review 

          Clustering is the essential procedure in unsupervised machine learning where each data point is grouped 

with others like it to discover hidden relations or patterns without label. This process involves employing various 

algorithms such as K-Means [11], DBSCAN [12], hierarchical clustering[13], mean shift clustering algorithm[14] 

and spectral clustering algorithm[15]  with the intention of organizing data into clusters that have similar 

characteristics. Optimal number of clusters and choice of distance measure are important issues, and clustering is 

applied for instance to market segmentation, image analysis or anomaly detection. Notwithstanding, the selection 

of an algorithm and sensitivity to noise should be considered while undertaking clustering analysis[16]. 

Studied a new GPU based K−means; ASB-K−means is introduced which is faster than current GPU based k-means 

algorithms thus allowing K−means Clustering of huge sets of data that surpasses the available GPU memory[17] 

.  A Centroids-Guided Deep Multi-View K-means method linking DL with MVC is proposed by the paper. This 

centers on cluster centroids to help it with deep representation learning giving the K-means friendly 

representations. Its effectiveness in multi-view task is evaluated by showing that this approach leads to improved 

clustering and closer-to-cluster-semantic matching of representations across datasets [18]. This paper tackles major 

data concepts like why big data is important and the role of data in clustering cases. It presents a new version of 

Mahalanobis Distance based K-Means clustering scheme combining partitioning and correlation method. The 

evaluation also demonstrates why it is better than other methods by clustering similar data with more precision 

than that of the current techniques [19]. The ratio-cut polytope, a crucial component of K-means and spectral 

clustering, was introduced to analyze the structure of these algorithms and derive inequalities. A new linear 

programming relaxation of K-means was developed, along with specific recovery conditions for two clusters based 

on a stochastic ball model. This relaxation outperforms any previous guarantee, demonstrating that the LP 

consistently recovers clusters when the distance between two centers exceeds one plus a root of three. Cluster 

recovery experiments showed that this approach surpassed semidefinite programming relaxation [20]. A modified 

hierarchical grouping method, Hierarchical++, was proposed in the paper. This method uses initial seeds placed 

in golden boxes to maintain disconnected groups. The aim was to improve clustering results without any 

intermediate rearrangements. In experiments, Hierarchical++ showed better results compared to traditional 

hierarchical techniques (single-link, complete-link, etc.), K-means, and K-means++[21].  The studied document 

provides an overview of hierarchical clustering in astronomy. It discusses how it traces its origin, its use in various 

astronomical scales, and revealing celestial hierarchy while at the same time classifying objects. By elaborating 

on them, it explains how these algorithms work under these conditions, what they can or cannot do and allow 

reliable astronomical discovery [22, 23].  The paper introduced a novel hierarchical clustering technique named 

HMC (Hierarchical Means Clustering). Instead of relying on traditional non-hierarchical methods, HMC employed 

nested partitions and estimated centroids using least squares to minimize within-cluster deviance across n partitions 

in the hierarchy. This resulted in a cascade of (n-1) divisions, each with minimal overall cluster variance, ranging 

from two clusters to n clusters. The paper presented six case studies comparing HMC to established model-based 

hierarchical clustering algorithms like k-means, Ward's method, and Bisecting k-means. [24].  This article 

presented a novel approach based on hierarchical clustering to tackle the small files problem in Hadoop Distributed 

File Systems (HDFS). By leveraging Dendrogram analysis, the technique compared file structures to identify and 

recommend optimal file consolidation strategies for efficient storage. In a simulation involving 100 CSV files with 

diverse structures, the algorithm successfully identified and recommended merging seven specific files, leading to 

a reduction in memory consumption. The results demonstrated the proposed algorithm's effectiveness in enhancing 
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file management efficiency [25]. HY-DBSCAN a parallel DBSCAN algorithm paper. Modified KD-tree for 

decomposition, spatial indexing via grids, and the distributed merging scheme. When it comes to performance of 

DBSCAN implementation in distributed system on scientific datasets, they are superior to existing solutions up to 

2048 cores leveraging the process and thread parallelization [26]. The paper enhances DBSCAN as an efficient 

clustering technique used in various polygonal-shaped databases. This drastically reduces computation costs by 

taking samples from an operational subset within that region where the samples can be calculated against. Its speed 

is tested and has been found to be superior to various recent approaches with only slightly reduced accuracy as 

compared to conventional DBSCAN [27]. It presents STRP-DBSCAN, a parallel DBSCAN method for clustering 

of spatial temporal trajectory data. The approach helps in increasing the computation distribution and reducing 

communication overhead, which can reduce the clustering time up to 96.2% in total. It introduces PER-SAC as a 

deep reinforcement learning-based technique for automatically tuning DBSCAN’s parameters which results in 

better accuracy of 8.8% and higher than other parameter tweaking strategies [28]. This paper suggests a revised 

DBSCAN algorithm for detecting anomalies of seasonally correlated time-series data. The new method is also 

indicated in relation to conventional DBSCAN for seasonal sets of data allowing detection of both inter-annual 

and within year abnormalities. Although DBSCAN finds 2.21% more anomalies (i.e., 3.92), the refined method 

identifies 4.79%, which represents an enhancement of 2.16% by the proposed method. Thus, the modified 

DBSCAN algorithm has higher efficiency in detecting local abnormalities in seasonal data [29]. This paper 

introduced RMS, a novel clustering algorithm that merged update equations from MS and BMS. Notably, RMS 

lacked the convergence threshold present in the similar NN-BMS algorithm, making it an appealing alternative. 

Combining both kernel and NN configurations, RMS leveraged the BMS convergence theorem to guarantee its 

convergence. Empirical tests on artificial and real-world data demonstrated that RMS outperformed both MM and 

MBMS clustering algorithms. Furthermore, RMS and MS exhibited wider attraction basins, leading to superior 

performance with smaller kernel apertures or fewer nearest neighbors. While NN-BMS required a convergence 

threshold, the NN version of RMS eliminated it entirely [30]. Data gathering often involves conflicting 

information, necessitating the selection of a single, most reliable source. Truth discovery methods, popular for 

integrating diverse data types, usually aim to summarize everything into a single consensus. While excluding 

outliers before consolidation might seem logical, it's often challenging. Our approach employed the mean shift 

clustering algorithm to identify and remove abnormal data, ultimately uncovering the truth value. This strategy 

has proven successful in various settings [31]. The paper focused on problems related with SC, introducing 

AFDSC, a combination of attribute fluctuation and density peak clusters, as well as AFHC, a variation of attribute 

fluctuation-based algorithms. Using evaluation, it was discovered that these algorithms performed better than other 

clustering algorithms on fifteen UCI datasets [15]. This paper was focused on reconsidering the effectiveness of 

spectral clustering algorithms in water distribution systems that are based on graph theory. The study evaluated 

these algorithms in several water networks with different sizes using diverse clustering techniques and measures 

of performance. The study showed that the efficiency of clustering techniques, such as K-means, for partitioning 

is not consistent across network platforms. On the other hand, PAM is a slightly better alternative regarding 

modularity and k-means as well as hierarchic clustering’s were faster in terms of internal indices. The various 

stability indices supported the use of PAM and CLARA as effective algorithms [32]. It presented a differential 

privacy-based privacy protecting spectral clustering algorithm. The measure was meant to add some noise in the 

inputs prior to clustering with an aim of protecting against sensitive information leakage. The stability, usefulness 

and efficiency of the algorithm for privacy risk reduction with high cluster precision was demonstrated by 

experimental results [33]. 

2. Research Methods 

         Within this section, we delineate the clustering algorithms namely, K-means, hierarchical clustering, 

DBSCAN, Mean Shift, and spectral clustering employed in this study. This includes detailed algorithm flowcharts 

and the fundamental equations crucial for their functionality. 

3.1 k-mean clustering.  

K-means clustering stands out as a top algorithm in the realm of unsupervised machine learning. The clustering 

process is visually represented in the flowchart below. 
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Fig 1. Flow chart of k-mean clustering algorithm. 

 

Above Fig 1 shows a partitioning algorithm called k-means which splits a dataset into k homogenous sets without 

any overlaps. It is through the iterative assignment of data points to their closest clustering centroid with 

subsequent updates to these centroid points to mean of the data assigned which minimize within cluster sum of 

square. A clustering technique aims at minimizing intra-cluster variance and maximizing inter-cluster separation 

as measured by some typical distance like the usual Euclidean one[34]. K-means clustering is an algorithm that is 

iterative, so it performs the operations of allocating data point into clusters and of updating centroid. It is, however, 

not as direct as several other algorithms. The main steps of the algorithm can be broken down into: 

Assign data points to cluster. 

 

𝐶𝑖 = 𝑎𝑟𝑔. 𝑚𝑖𝑛𝑗 ∥ 𝑥𝑖 − 𝜇𝑗 ∥2 (1) 

 

Where   𝐶𝑖: cluster to which data points. 𝑥𝑖    𝜇𝑗: centroid of clusters. ∥ 𝑥𝑖 − 𝜇𝑗 ∥2: Euclidean distance Updating 

cluster centroid 𝜇𝑗 =
1

∥𝐶𝑗∥
∑ 𝑋𝑖𝑥𝑖⊆𝑐𝑗

, ∑ 𝑋𝑖𝑥𝑖⊆𝑐𝑗
: summation of all data points in clusters j 

The process will be iterative, and convergence will be achieved when the assignments and centroid stop changing 

or if a stopping criterion is reached. K-means does not present a general equation which is also the case with linear 

regression and others. 

3.2 Hierarchical Clustering Algorithm 

Unsupervised machine leaning uses Versatile Technique for Hierarchical Clustering where it structures data in 

HCL (Hierarchical Cluster Learning). Unlike others, however, it does not involve enumerating the number of 

clusters prior. Figure 2 below illustrates all the steps involved in the performance process. 
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Fig 2. Hierarchical clustering algorithm 

 

The above Fig 2 shows as follow  

Start: Begin with each data point as a separate cluster. Calculate Proximity Matrix (A): Compute pairwise 

distances/similarities between data points. Merge Closest Clusters: Iteratively merge the two closest clusters 

based on a chosen linkage criterion. Update Proximity Matrix (A): Recalculate distances between the merged 

cluster and all remaining clusters. Count Clusters: Continue merging until reaching a desired number of clusters 

or a stopping criterion. Hierarchical clustering progressively merges clusters based on proximity, updating the 

cluster structure until a hierarchy is formed or a stopping condition is met [24, 35]. In hierarchical clustering, 

various linkage methods determine how the distance between clusters or data points is computed. Here are the 

equations for three common linkage methods[36]. Single linkage method  equation dsingle(A, B) =

min Error!  Bookmark not defined. A and B is defined as the minimum distance between any pair of points, one 

from each cluster. Complete linkage defines as dcomplete(A, B) = max {dist(a, b)|a ∈ A, b ∈ B}′ The distance 

between clusters A and B is defined as the maximum distance between any pair of points, one from each cluster. 

 

 

daverage(A, B) =
1

|A|. |B|
∑ ∑ dist(a, b)

b∈Ba∈A

 

 

 

(2) 

The distance between clusters A and B is defined as the average distance between any pair of points, one from 

each cluster. There, “dist(a,b)” designates the separation or difference of single data points 

a and b. The linkage procedure in hierarchical clustering is based on these equations that calculate the distances 

between clusters. 

3.3 Density-based spatial clustering of applications with noising (DBSCAN) 

An instance of the algorithms commonly utilized in data mining and machine learning is called DBSCAN, which 

is a density-based clustering algorithm. It associates points in proximity and defines them as clusters which are 

regions of high density surrounded by low density regions. It is reliable in different kinds of analysis because it 

can recognize outliers as noise. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.  Flow chart for DBSCAN. 

 

  

The detailed flowchart outlining the steps for density-based spatial clustering of applications with noise 

(DBSCAN) of Fig3 are as follows. 
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Start: Initialize the algorithm by providing the dataset, parameter ε (epsilon), and parameter MinPtsMinPts 

(minimum number of points required to form a dense region). Accept Parameters: Accept input parameters ε and 

MinPtsMinPts. Initialize: Mark all points in the dataset as unvisited. Get an Unvisited Point: Select an unvisited 

point from the dataset. Check Density Reachability: Check for points within ε distance from the selected point. 

If the number of points within ε is greater than or equal to MinPtsMinPts, proceed to the next step. Create New 

Cluster: Start a new cluster with the selected point as the core point. Add all directly density-reachable points 

(points within ε distance) to the cluster. If a point is a core point, repeat steps 5 and 6 recursively to expand the 

cluster. Mark as Visited: Mark all points in the cluster as visited. Repeat or Stop: If there are unvisited points 

remaining in the dataset, repeat steps 4 to 7. Otherwise, terminate the algorithm. Check for Noise: Identify points 

that are not assigned to any cluster as noise points. Output Clusters and Noise: Output the formed clusters and 

noise points. End: End of the algorithm. 

This flowchart outlines the step-by-step process of DBSCAN clustering, where clusters are formed based on 

density connectivity, and points that do not belong to any cluster are identified as noise points [12, 27]. 

3.4 Mean Shift Clustering Algorithm 

Adaptive clustering Mean Shift which works in an iterative mode moving data points towards the point of high 

densities or the centroid. It’s mode-search procedure is self-defined such that it does not need prior clusters number 

but can adjust itself for any shape or size. It is computationally expensive as it defines an area for density estimation 

using a bandwidth parameter that is widely used in the image segmentation and the unsupervised clustering tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. Mean shift clustering algorithm 

 

Fig 4 explains the detailed flowchart outlining the steps for Mean Shift clustering: 

Start: Initialize the Mean Shift clustering algorithm. Grayscale by Color Features: If the data contains color 

features, convert them to grayscale. This step ensures that the clustering algorithm operates on a consistent feature 

space. Mean Shift Initialization: Initialize the centroids for each data point. This can be done randomly or using 

a specified initialization method. Calculate m(x): For each data point x, compute the mean shift vector m(x). The 

mean shift vector is calculated as the weighted average of the data points within a certain radius ℎh from x. The 

weight of each point is determined by a kernel function, such as the Gaussian kernel. m(x)−x>ε Check: Check if 

the mean shift vector m(x) minus the original data point x is greater than a specified threshold ε.If m(x)−x>ε for 

any data point x, proceed to the next step. Otherwise, terminate the algorithm. Shift Data Points: Update each 

data point x by shifting it towards m(x). This step moves each data point towards the mode of the local data 

distribution. Repeat or End: If any data point has moved significantly (i.e.,m(x)−x>ε), repeat steps 4 to 6. 

Otherwise, terminate the algorithm. Output Clusters: Assign each data point to its nearest mode. The modes 

represent the cluster centers. End: End of the algorithm. This flowchart outlines the step-by-step process of Mean 

Shift clustering, where data points are iteratively shifted towards the modes of their local data distributions until 

convergence. Finally, the algorithm assigns each data point to its nearest mode, resulting in the formation of 

clusters. 
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Where, 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗  are data points.  N (𝑥𝑖) represents neighbor of data points and K is the kernel function, typically 

Gaussian, determining the weight of each point in the neighborhood based on its distance from xi, While this 

equation describes the mean shift vector computation, the clustering process in Mean Shift involves iteratively 

applying these shifts to converge data points towards local density peaks, leading to the identification of clusters  

[37, 38]. 

 

3.5 Spectral clustering Algorithm  

Spectral clustering is a graph-based method that partitions data by leveraging eigenvalues and eigenvectors to 

identify similarities between data points. It transforms data into a lower-dimensional space for clustering, 

emphasizing relationships between points regardless of their geometric arrangement, making it effective for non-

linearly separable data. Spectral clustering excels in segmenting complex structures and is commonly used in 

image segmentation and community detection tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Spectral clustering algorithm 

The above Fig 5 shows the detailed flowchart outlining the steps for Spectral Clustering: 

Start: Initialize the Spectral Clustering algorithm. Data: Input the dataset. Affinity Matrix Construction: 

Construct the affinity matrix W based on pairwise similarities between data points. Common methods for affinity 

computation include Gaussian kernel, k-nearest neighbors, or epsilon-neighbors. Graphical Representation: 

Represent the dataset as a weighted graph, where nodes represent data points and edges represent pairwise 

affinities. The affinity matrix W serves as the adjacency matrix of the graph. Laplacian Matrix Construction: 

Compute the Laplacian matrix L from the affinity matrix W. There are different types of Laplacian matrices: 

unnormalized, normalized, and symmetric normalized. Eigen Decomposition: Perform eigen decomposition on 

the Laplacian matrix L to obtain its eigenvectors and eigenvalues. The number of eigenvectors selected depends 

on the desired number of clusters. Dimensionality Reduction: Select the eigenvectors corresponding to the k 

smallest eigenvalues, where k is the number of clusters. These eigenvectors form a lower-dimensional 

representation of the data. Clustering: Apply a standard clustering algorithm (e.g., KMeans) to the reduced-

dimensional space formed by the selected eigenvectors. The number of clusters is determined by the number of 

eigenvectors selected in the previous step. Output Clusters: Assign each data point to its corresponding cluster 

based on the clustering results. End: End of the algorithm. 

This flowchart outlines the step-by-step process of Spectral Clustering, which involves constructing an affinity 

matrix from the data, representing the data as a graph, computing the Laplacian matrix, performing eigen 

decomposition, reducing dimensionality, and finally, clustering the data in the reduced space [15]. 

 

 

 

𝑚(𝑥𝑖) =
∑ 𝐾 (

(∥ 𝑥𝑗 − 𝑥𝑖 ∥
ℎ

) ∗ 𝑥𝑖𝑥𝑗∈𝑁(𝑥𝑖)

∑ 𝐾 (
(∥ 𝑥𝑗 − 𝑥𝑖 ∥

ℎ
)𝑥𝑗∈𝑁(𝑥𝑖)

− 𝑥𝑖 

 

(3) 
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4. Result 

In this section, we provide an overview of the datasets, evaluation criteria, clustering algorithms targeted for 

optimization, initial methodologies used as a benchmark, and the configurations of parameters applied in the study. 

4.1 Datasets  

In Table 1 The provided data reveals insights into various measurements across different datasets. For iris data, 

Setosa exhibits a slightly negatively skewed sepal length distribution with a mean of 5.76 cm and a standard 

deviation of 0.80 cm, while Versicolor displays a slightly negatively skewed sepal width distribution with a mean 

of 3.07 cm and a standard deviation of 0.53 cm. Virginica's petal width distribution is negatively skewed with a 

mean of 3.46 cm and a standard deviation of 1.75 cm. Moving to seed data, Kama and Rosa seeds both have 

slightly negatively skewed length distributions, with means of 14.80 mm and 14.55 mm, and standard deviations 

of 2.90 mm and 1.30 mm, respectively. Canadian seeds exhibit a moderately flat distribution of gamma ray values 

with a mean of 0.87 and a standard deviation of 0.02. In well log data, the gamma ray values display a positively 

skewed distribution with a mean of 44.72 and a standard deviation of 26.60, while the sonic log values also show 

a positively skewed distribution with a mean of 0.06 and a standard deviation of 0.064. These insights offer a 

comprehensive understanding of the central tendency, variability, and distribution shape across the measured 

features within each dataset. 

  

Table 1: The Description of Dataset 

Measure Iris Data Seed Data Well Log Data 

 Setos

a 

versicolor 

virginica 

Kama 

Rosa 

Canadian Gamma Ray Sonic log  

Mean  5.76 3.07 3.46 14.80 14.55 0.87 44.72 0.06 

S. D 0.80 0.53 1.75 2.90 1.30 0.02 26.60 0.064 

Kurtosis -0.19 -0.16 -1.43 -1.08 -1.10 -0.14 0.72 1.131 

Skewness 0.46 0.31 0.39 0.38 -0.53 0.13 1.08 1.21 

T Observation 150 210 2435 

 

4.1.1 Iris data and applying different clustering Methods. 

In unsupervised clustering different clusters methods are used i.e. K-mean, Hierarchical Agglomerative clustering, 

Density-based spatial clustering of applications with noising (DBSCAN), Mean shift data points, Gaussian mix 

data points and spectral clustering. 
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(e) 

Fig 6. Clustering algorithm performance by using iris dataset. 

Fig 6(a) k-mean clustering (b) Hierarchical Agglomerative clustering (c) DBSCAN clustering (d) Mean shift 

clustering (e) spectral clustering algorithm. Iris data set are not well defining data have outliers and non-spherical 

data. Above all method give three number of clusters accept mean shift clustering algorithm performed two number 

of clusters. K mean clustering also not performed well because of outliers and non-spherical data. 

4.1.2 Accuracy level and execution time of each clustering algorithm  

Evaluation of each method’s effectiveness is done based on its precision and performance speed. However, the 

preferred approach is faster and more correct. Figure 1: To evaluate the efficiency and accuracy in various 

clustering techniques, we compare their correctness and processing time. 
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(b) 

 

Fig 7. Accuracy scores and Execution times of clustering algorithms. 

Fig 7(a) accuracy level of different clustering algorithm (b) time execution of the algorithms. In this figure 

accuracy level of spectral clusters become 100% but executive time of spectral clustering become more 6.969 

second and mean shift accuracy level is good 80.81but executive time become 27.27 second. DBSCAN clustering 

take less execution times as compared to the other methods. 

 

4.2 Seed data and different clustering algorithms 

A total of 210 observations from the seed data set were used in evaluating the performance of different clustering 

techniques. This dataset was run through all these clustering algorithms like K-means, Hierarchical Agglomerative 

Clustering, DBSCAN, Spectral Clustering, and Mean Shift. This aim was to assess and determine which algorithm 

offered an ideal way of dividing the seed set into useful groups. This thorough assessment has been undertaken 

with an intention of identifying the strength of the cluster methods using the 210 data points, and the ability of 

such techniques to group these observation points into distinct clusters according to underlying trends, correlations, 

or similarities. 
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(e) 

Fig 8. Clustering outcomes observed employing the seed dataset. 

Fig 8 (a) applied k mean clustering and find four number of clusters, (b) hierarchical clustering algorithm give 

three number of clusters, (c) DBSCAN six number of clusters (d) mean shift algorithm give two number of clusters 

and (e) spectral clustering distributed the data in three similar group. 

 

4.2.1 Efficiency and accuracy of clustering algorithm by using Seed dataset. 

Unlike other previous experiments, in this evaluation we raised the observation number in the seed dataset. We 

used a larger data set to investigate if the algorithmically performance depends on the data set’s scale. The figure 

below describes the precision as well as runtime of every clustering algorithm used on the enlarged set of seeds. By 

comparing results, we can judge those algorithms’ performance with the increased data volume and reveal their 

accuracy and efficiency in this sense. 
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Fig 9. Accuracy and Execution time using the seed dataset. 

Figure 9 (a) accuracy level of different algorithm (b) shows the execution times. The plot shows mean shift gives 

accurate results as compared to other methods, but its execution time is very high taking 1.45. k means clustering 

algorithm performed better results its accuracy is 91.06% also execution time is very less 0.01. as compared to the 

other methods k mean performed batter results in terms of accuracy and execution times. 

4.3 Well log data clustering   

In the realm of machine learning, various unsupervised algorithms serve the purpose of clustering, facilitating the 

grouping of data points based on similarities or patterns without labeled information. To explore the efficacy of 

these methods, we employed them across diverse datasets. Specifically, we utilized log data well to evaluate the 

performance of different clustering algorithms. This evaluation sought to assess how well these algorithms could 

delineate and organize the well log data, revealing inherent structures or relationships within the dataset. By 

applying a range of clustering methods to this specific dataset, we aimed to gauge their effectiveness in capturing 

distinct patterns or clusters present in the well log data. 
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Fig 10.  Clustering by using well log dataset. 

Fig10, in clusters (a - e) were generated utilizing various clustering algorithms. Specifically, (a, b, and e) employed 

four clusters, while DBSCAN utilized eleven clusters, and the Mean Shift method utilized two clusters. This 

analysis involved the 

4.3.1 Accuracy and time execution. 

This stage involved conducting an analysis of well log data including 2435 observations. The purpose of this study 

was to measure how well the algorithms could deliver accurate results while also being efficient 

computationally. However, this evaluation was centered on scoring using silhouettes which is a measure of cluster 

compactness and separation. We wanted to find out how effective they were in grouping the Gamma Ray data into 

clusters with respect to their execution time. Through this analysis, the researchers wanted to grasp how well the 

clustering techniques were able to deal with a sample of 2435 observations, considering both accuracy and 

computation requirements. 
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(b) 

Fig 11. Accuracy and Execution time. 

Fig 11 (a) shows the level of accuracy of different clustering algorithms, (b) execution times of clustering 

algorithm. In (a) k mean clustering performed accurate results as compared to the other method and (b) k mean 

time execution is less as compared to the other methods. Spectral cluster show less accurate results and its 

execution time also more 10.100s 

Clustering is a crucial part of unsupervised machine learning, especially when dealing with diverse data types. Its 

goal is to group similar data together, setting the stage for deeper analysis. With a variety of clustering algorithms 

available, the challenge lies in picking the best method for different datasets. Surprisingly, there hasn't been much 

comparative study to check accuracy and execution time across these algorithms. This paper dives into a 

comparative analysis of various clustering methods, including K-means, Hierarchical Agglomerative Clustering, 

DBSCAN, Mean Shift, Gaussian Mix, and Spectral Clustering. The aim is to assess their performance by 

examining both accuracy and execution time using diverse datasets. The findings reveal interesting insights. K-

means, for instance, delivers accurate results and is efficient when handling large datasets. Hierarchical clustering 

automatically determines the number of clusters but falls short in accuracy. DBSCAN isn't ideal for larger datasets. 

Meanwhile, Mean Shift and Spectral Clustering perform well with small datasets but struggle with larger ones, 

taking more time compared to other algorithms. 

4.4 comparative study of all the methods using clustering. 

Table 2 presents clustering results for three datasets (Iris, Seed, and Well Log) using different algorithms, including 

K-means, Hierarchical K-means, DBSCAN, Mean Shift, and Spectral clustering. The accuracy percentages and 

execution times are provided for each algorithm. 
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1. Iris Dataset: 

K-means and Hierarchical K-means achieved similar accuracy at around 80%, with K-means slightly higher. 

DBSCAN had a lower accuracy of 70.87%. Mean Shift and Spectral clustering performed well, with Mean Shift 

achieving 100% accuracy. Notably, K-means maintained stable and consistent accuracy as the sample size 

increased. Time execution for K-means: 0.61s 

2. Seed Dataset: 

K-means demonstrated the highest accuracy at 91.06%, outperforming other algorithms. Hierarchical K-means 

also performed well with an accuracy of 86.70%. DBSCAN had a lower accuracy of 63.75%, while Mean Shift 

achieved perfect accuracy (100%). Remarkably, K-means consistently maintained high accuracy even with an 

increasing sample size. Time execution for K-means: 0.01s 

3. Well Log Dataset: 

K-means exhibited the highest accuracy at 98.54%, followed by Hierarchical K-means at 91.64%. DBSCAN faced 

challenges with a lower accuracy of 47.18%. Mean Shift and Spectral clustering showed reasonable accuracy. 

Notably, K-means accuracy remained consistently high with an increasing sample size. Time execution for K-

means: 0.057s 

Including the time execution information provides insights into the computational efficiency of each clustering 

algorithm, with K-means showing relatively low execution times in all three datasets. 

Including the information about K-means maintaining or improving accuracy with an increasing sample size adds 

an important dimension to the interpretation of the results, suggesting the robustness and scalability of K-means 

clustering in these datasets. 

Table: 2 Summary of all the results 

 

3. Conclusion 

        Clustering is very important for unsupervised ML when working with large data sets as well as 

intricate/detailed feature spaces. The development of clustering ensemble shows promising avenues towards 

robust clustering and dealing with data noise. Unsupervised machine learning has five popular clustering 

algorithms having individual limitations. Other algorithms might not work well with dirty data sets, whereas others 

will not do well with big data sets. Specific problems in each clustering algorithm are discussed by various 

researchers. Evaluations of these algorithms typically focus on two main aspects: accuracy and execution time. 

Despite the critical role clustering algorithms play, there's a notable gap in research: comparative study involving 

all cluster-based measures considering both precision and speed. Consequently, there is a need to fill the gap in 

the research by examining how different sized datasets affect the algorithms’ performance systems. The findings 

suggest that the K-means clustering algorithm is well-suited for handling larger datasets. Notably, as the volume 

of observations grows, K-means demonstrates an intriguing trend of improving both in accuracy and processing 

speed. However, when faced with substantial noise within datasets, mean shift and spectral clustering algorithms 

outperform K-means in terms of accuracy. It's worth noting, though, that these alternatives exhibit longer execution 

times compared to K-means. 
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